

POWER ELECTRONICS I

AC-DC Converters

Three-Phase Rectifiers

Dr. Islam Mohamed

Electrical Engineering Department Shoubra Faculty of Engineering, Benha University <u>Islam.ahmed@fen.bu.edu.eg</u>

Questions Lecture two

 Q_1) what are the rating values of the Thyrsitors in the converter?

- Q_2) Draw the waveforms of the Thyristor voltage and current
- Q_3) What is the control range of α in the pervious case studies?
- Q₄) Write an expression of the instantaneous load current for all pervious case studies
- Q₅) what are the rating values of the freewheeling diode in the threephase half-wave control rectifier with highly inductive loads?

Three-phase rectifier Plan

Lecture Four: Three-phase Full wave uncontrolled rectifiers circuits

General

Why three-phase Full-wave rectifiers ?

- Three-phase full wave rectifiers provide higher average output voltage compared to the all pervious rectifier circuits.
- ➤ The harmonics frequency of output voltage ripples in a three-phase full wave rectifier circuits is higher compared to the pervious rectifier. Thus, the three-phase rectifier requires a smaller filter with a lower cost.
- Three-phase full wave rectifier circuits don't produce dc current component in the source. so the transformer is not saturated.

C.

The rectification efficiency is the highest

Large DC

output

General

Disadvantages:

tien Switch Field Switch Ratine

- Three-phase rectifiers require higher rating of the power electronics switches (Diodes and Thyristors)
 - ✓ PIV, RMS and Average Current,....
- > Higher rating switches tends to high cost and large size.
- > Complex control, difficult protection, and large heatsink,

High Cost

Construction

Two diodes must be forward at any instant (D₁,D₃,D₅) with (D₂,D₄,D₆).
 Line voltage will be applied to the load at any instant.
 A transition of the highest line-to-line voltage must take place every 360° / 6 = 60°

Operation

Output Voltage waveforms

R-Loads

Highly inductive Loads

Operation

Currents waveforms

1- Supply voltages:

 V_{ab} (ω t)= V_{ml} sin(ω t+ $\pi/6$), V_{bc} (ω t)= V_{ml} sin(ω t- $\pi/2$), V_{ca} (ω t)= V_{ml} sin(ω t- $7\pi/6$)

2- Output average voltage:

$$V_{o.avg} = \frac{1}{\pi/3} \int_{\pi/6}^{\pi/2} v_{ab} d\omega t = \frac{1}{\pi/3} \int_{\pi/3}^{2\pi/3} V_{m,L-L} \sin w t d(wt) = \frac{3V_{m,L-L}}{\pi}$$

= 0.95 $V_{m,L-L}$ ¹⁰

3- RMS Load voltage

- Since the output voltage is periodic with period 1/6 of the ac supply voltage, the harmonics in the output are of order $6k\omega$, k=1,2,3,...
- Advantage : output is inherently like a dc voltage, and the high-frequency low-amplitude harmonics enable filters to be effective.

$$v_0(t) = V_{o,avg} + \sum_{n=6,12,18..}^{\infty} V_n \cos(nw_0 t + \pi)$$

$$V_n = \frac{6 V_{m,L-L}}{\pi (n^2 - 1)}$$
, $n = 6, 12, 18, ...$

$$V_{o,rms} = \sqrt{V_{o,avg}^{2} + \left(\frac{V_{6}}{\sqrt{2}}\right)^{2} + \left(\frac{V_{12}}{\sqrt{2}}\right)^{2}}$$

4- Average load current For R & RL-Loads

For both cases:
$$I_{o\ avg} = \frac{Vo, avg}{R}$$

5- RMS Load current

For Resistive load: $I_{o, rms} = V_{o, rms}/R$ For Highly inductive load: For Highly in stive pad: $I_{\alpha',rms} = V_{\alpha',rm}$ $I_{o, rms} = I_{o, avg}$

6- Diode currents Each diode conducts one-third of the time, resulting in i_{D1} $I_{D,avg} = \frac{1}{3} I_{o,avg}$ l_{D1} i_{D_2} i_{D_2} i_{D3} $I_{D,rms} = \frac{1}{\sqrt{3}} I_{o,rms}$ l_{D3} i_{D_4} l_{D_4} i_{D5} ID5 i_{D6} l_{D6} 7- RMS supply current $i_a = i_{D1} - i_{D4}^{i_a}$ $i_b = i_{D3} - i_{D6}$ ΤD $i_c = i_{D5} - i_{D2} \quad \text{and} \quad v_{bn}$ $\frac{2}{3}$ – I_{S,rms} V_{cn} ΔD_4 11

ib

8- The harmonics in the supply currents

• Supply current waveform is: odd, f(x)=-f(x+180), so using Fourier

The fundamental frequency of the ac system i_a and harmonics of order:

$$6k \pm 1 \quad \text{where } k=1,2,3,\dots$$

$$i_{a} = \frac{2\sqrt{3}}{\pi} I_{o}(\cos \omega_{o}t - \frac{1}{5}\cos 5\omega_{o}t + \frac{1}{7}\cos 7\omega_{o}t - \frac{1}{11}\cos 11\omega_{o}t + \frac{1}{13}\cos 13\omega_{o}t + \frac{1}{1$$

To prevent harmonic currents to enter the ac system. Resonant filters for 5th and 7th harmonics. High-pass filters for higher order harmonics. \checkmark

Questions

 Q_1) what are the rating values of the Diodes in the converter?

- Q₂) Calculate the rectification efficiency for R and highly inductive loads.
- Q₃) what happen to the load voltage and current waveforms if a freewheeling diode is connected incase RL-loads?
- Q₄) what happen to the load voltage and current waveforms if a freewheeling diode is connected incase RL-loads?